🖌 404-660-0194 — 🗳 awanna3@gatech.edu — 🌐 Web Page — 🛅 LinkedIn — 🌎 G	litHub
Summary — Computer engineering PhD Student focusing on improving hardware design autom modern AI and cryptographic workloads. I aim to develop and apply the skills gained through resear tools and solutions in hardware processor design.	
Skills	
Programming C/C++, Python, Rust, CUDA Hardware SystemVerilog, HLS, Vitis, QuartusMachine Learning PyTorch, Nvidia Ter Software Git, AWS, SQL	nsorRT, Quantization
Education	
Georgia Institute of Technology Ph.D. in Electronic and Computer Engineering	Aug 2024 – May 2029
Imperial College London Masters of Engineering in Electronic and Information Engineering - 1 st Class Honours (4.0 GPA) Dean's List 3 rd Year (Top 10%), Dean's List 4 th Year (Top 5%)	Oct 2020 – Jul 2024
Technical Experience	
Numerical Hardware Engineer Intern at Intel	Jun 2024 – Aug 2024
 Automated mixed-precision floating point multiplier design optimization in Rust using E-Grap Investigated glitch power minimization in hardware designs using Integer Linear Programmir Explored techniques and methods for optimal dot-product hardware units 	ohs
FPGA Engineering Co-Op at Quantum Motion	Apr 2023 – Oct 2023
 Designed and integrated bespoke signal generator for High-Speed Qubit Feedback on an FPG. Built custom Python code-base using PYNQ and QICK interface with the FPGA Programmed RP2040 MicroController to communicate using TCP/IP over ethernet connection 	
Analogue and Digital IC Validation Intern at Quantum Motion	Jul 2022 – Oct 2022
 Validated operation of Ring Oscillator hardware on silicon chips Analysed transistor properties across a range of chips, at room and cryogenic Temperatures (2) 	2K) with Python
Research Experience	
Hardware Accelerator Generation and Optimization for Cryptographic Primitives Georgia Institute of Technology	Aug 2024 – Present
 Automatically applying HLS Optimizations to Cryptographic Primitives, using E-Graphs to get cryptographic accelerators for resource-constrained hardware 	-
– Developing surrounding C-to-RTL HLS workflow to guarantee the correctness and optimal ac	
Quantifying and Automating Interpretability for Deep Learning Imperial College London - Final Year Project - Primary Author - Submitted to AAAI 2025	Oct 2023 – Jun 2024
 Designed metric to quantitatively evaluate the interpretability of a deep learning model, enable Developed an automated workflow to add interpretability to CNNs, achieving up to an 84% in improvement over the manual INN model 	nference latency
- Demonstrated comparable interpretability results on standard CNNs with state-of-the-art Gra-	dCAM methods
OptiMult - Multiplier Optimization via E-Graph Rewriting Imperial College London - Primary Author - Presented at ASILOMAR 2023 - Available Here	Dec 2022 – Sep 2023
 Created tool in Rust to compile hardware arithmetic expressions into optimized representatio Demonstrated up to a 46% latency reduction in squarer circuits and 9% latency reduction in against industry standard logic synthesis tools 	
Notable Projects	
Deep Learning Activation Function Hardware Accelerators in SystemVerilog	Jan 2024 – Mar 2024
 Designed and Verified 4 – 16 bit parameterized implementations of Softmax and element-wis Integrated activation functions into a re-configurable, dynamically scheduled hardware architecture 	
Deep Learning Models in PyTorch - U-Net, VAE Transformer, DCGAN	Jan 2023 – Mar 2024
 Implemented a U-Net CNN architecture to perform image classification and segmentation on Analyzed a VAE transformer architecture on generating and classifying the MNIST dataset Investigated Class Conditional & Wasserstein-GP DCGAN architectures on generating images 	

Andy Wanna 🜙 404-660-0194 — 🗳 awanna3@gatech.edu — 🌐 Web Page — 🛅 LinkedIn — 🔘 GitHub

Cosine Accelerator on FPGA in SystemVerilog

Reduced the latency of a vector function by 77% on an FPGA using an optimized CORDIC cosine block in SystemVerilog
 Created customized hardware floating-point arithmetic blocks, with low-level programming in C for further speed-ups

Jan 2023 - Mar 2023